Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 85(3): 413-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19961470

RESUMO

Conservation objectives for non-breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence-based decisions. Our conceptual framework is individual-based ecology, in which populations are viewed as having properties (e.g. size) that arise from the traits (e.g. behaviour, physiology) and interactions of their constituent individuals. The link between individuals and populations is made through individual-based models (IBMs) that follow the fitness-maximising decisions of individuals and predict population-level consequences (e.g. mortality rate) from the fates of these individuals. Our first IBM was for oystercatchers Haematopus ostralegus and accurately predicted their density-dependent mortality. Subsequently, IBMs were developed for several shorebird and wildfowl species at several European sites, and were shown to predict accurately overwinter mortality, and the foraging behaviour from which predictions are derived. They have been used to predict the effect on survival in coastal birds of sea level rise, habitat loss, wind farm development, shellfishing and human disturbance. This review emphasises the wider applicability of the approach, and identifies other systems to which it could be applied. We view the IBM approach as a very useful contribution to the general problem of how to advance ecology to the point where we can routinely make meaningful predictions of how populations respond to environmental change.


Assuntos
Aves/fisiologia , Animais , Conservação de Recursos Energéticos , Ecossistema , Modelos Biológicos , Dinâmica Populacional
2.
Proc Biol Sci ; 274(1616): 1449-55, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17412684

RESUMO

Introductions of non-native species are seen as major threats to ecosystem function and biodiversity. However, invasions of aquatic habitats by non-native species are known to benefit generalist consumers that exhibit dietary switches and prey upon the exotic species in addition to or in preference to native ones. There is, however, little knowledge concerning the population-level implications of such dietary changes. Here, we show that the introduction of the Manila clam Tapes philippinarum into European coastal waters has presented the Eurasian oystercatcher Haematopus ostralegus ostralegus with a new food resource and resulted in a previously unknown predator-prey interaction between these species. We demonstrate, with an individuals-based simulation model, that the presence of this non-native shellfish, even at the current low density, has reduced the predicted over-winter mortality of oystercatchers at one recently invaded site. Further increases in clam population density are predicted to have even more pronounced effects on the density dependence of oystercatcher over-winter mortality. These results suggest that if the Manila clam were to spread around European coastal waters, a process which is likely to be facilitated by global warming, this could have considerable benefits for many shellfish-eating shorebird populations.


Assuntos
Bivalves , Charadriiformes/fisiologia , Ecossistema , Animais , Biodiversidade , Ecologia , Europa (Continente)
3.
Biol Rev Camb Philos Soc ; 81(4): 501-29, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16863594

RESUMO

As field determinations take much effort, it would be useful to be able to predict easily the coefficients describing the functional response of free-living predators, the function relating food intake rate to the abundance of food organisms in the environment. As a means easily to parameterise an individual-based model of shorebird Charadriiformes populations, we attempted this for shorebirds eating macro-invertebrates. Intake rate is measured as the ash-free dry mass (AFDM) per second of active foraging; i.e. excluding time spent on digestive pauses and other activities, such as preening. The present and previous studies show that the general shape of the functional response in shorebirds eating approximately the same size of prey across the full range of prey density is a decelerating rise to a plateau, thus approximating the Holling type II ('disc equation') formulation. But field studies confirmed that the asymptote was not set by handling time, as assumed by the disc equation, because only about half the foraging time was spent in successfully or unsuccessfully attacking and handling prey, the rest being devoted to searching.A review of 30 functional responses showed that intake rate in free-living shorebirds varied independently of prey density over a wide range, with the asymptote being reached at very low prey densities (<150/m-2). Accordingly, most of the many studies of shorebird intake rate have probably been conducted at or near the asymptote of the functional response, suggesting that equations that predict intake rate should also predict the asymptote.A multivariate analysis of 468 'spot' estimates of intake rates from 26 shorebirds identified ten variables, representing prey and shorebird characteristics, that accounted for 81% of the variance in logarithm-transformed intake rate. But four-variables accounted for almost as much (77.3%), these being bird size, prey size, whether the bird was an oystercatcher Haematopus ostralegus eating mussels Mytilus edulis, or breeding. The four variable equation under-predicted, on average, the observed 30 estimates of the asymptote by 11.6%, but this discrepancy was reduced to 0.2% when two suspect estimates from one early study in the 1960s were removed. The equation therefore predicted the observed asymptote very successfully in 93% of cases. We conclude that the asymptote can be reliably predicted from just four easily measured variables. Indeed, if the birds are not breeding and are not oystercatchers eating mussels, reliable predictions can be obtained using just two variables, bird and prey sizes. A multivariate analysis of 23 estimates of the half-asymptote constant suggested they were smaller when prey were small but greater when the birds were large, especially in oystercatchers. The resulting equation could be used to predict the half-asymptote constant, but its predictive power has yet to be tested. As well as predicting the asymptote of the functional response, the equations will enable research workers engaged in many areas of shorebird ecology and behaviour to estimate intake rate without the need for conventional time-consuming field studies, including species for which it has not yet proved possible to measure intake rate in the field.


Assuntos
Charadriiformes/fisiologia , Ingestão de Alimentos , Comportamento Alimentar , Invertebrados/crescimento & desenvolvimento , Animais , Charadriiformes/anatomia & histologia , Invertebrados/anatomia & histologia , Análise Multivariada , Densidade Demográfica , Dinâmica Populacional , Valor Preditivo dos Testes , Fatores de Tempo
4.
Ecol Appl ; 16(6): 2215-22, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205899

RESUMO

In behavior-based individual-based models (IBMs), demographic functions are emergent properties of the model and are not built into the model structure itself, as is the case with the more widely used demography-based IBMs. Our behavior-based IBM represents the physiology and behavioral decision making of individual animals and, from that, predicts how many survive the winter nonbreeding season, an important component of fitness. This paper provides the first test of such a model by predicting the change in winter mortality of a charadriid shorebird following removal of intertidal feeding habitat, the main effect of which was to increase bird density. After adjusting one calibration parameter to the level required to replicate the observed mortality rate before habitat loss, the model predicted that mortality would increase by 3.65%, which compares well with the observed increase of 3.17%. The implication that mortality was density-dependent was confirmed by predicting mortality over a range of bird densities. Further simulations showed that the density dependence was due to an increase in both interference and depletion competition as bird density increased. Other simulations suggested that an additional area of mudflat, equivalent to only 10% of the area that had been lost, would be needed by way of mitigation to return mortality to its original level. Being situated at a high shore level with the flow of water in and out impeded by inlet pipes, the mitigating mudflat would be accessible to birds when all mudflats in the estuary were covered at high tide, thus providing the birds with extra feeding time and not just a small replacement mudflat. Apart from providing the first, and confidence-raising, test of a behavior-based IBM, the results suggest (1) that the chosen calibration procedure was effective; (2) that where no new fieldwork is required, and despite being parameter rich, a behavior-based IBM can be parameterized quickly (few weeks), and thus cheaply, because so many of the parameter values can be obtained from the literature and are embedded in the model; and (3) that behavior-based IBMs can be used to explore system behavior (e.g., the role of depletion competition and interference competition in density-dependent mortality).


Assuntos
Comportamento Animal , Charadriiformes , Ecossistema , Modelos Biológicos , Mortalidade/tendências , Animais , Previsões , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...